Just as many interesting integer sequences can be defined and their properties studied, it is often of interest to additionally determine which of their elements are prime. The following table summarizes the indices of the largest known prime (or probable prime) members of a number of named sequences.
sequence | Sloane | digits | discoverer | search limit | comments | |
alternating factorial | A001272 | 9158 | 32308 | Lewis, Jobling, and Nash | 9158 | probable prime; search underway by E. W. Weisstein |
Apéry number | A092825 | 6624 | 10136 | E. W. Weisstein (Mar. 2004) | 104 (E. W. Weisstein, Mar. 2004) | probable prime |
Apéry number | 8 | 7 | E. W. Weisstein (Mar. 2004) | 1103800 (E. W. Weisstein, Mar. 16, 2004) | ||
Bell number | A051130 | 2841 | 6531 | 22553 (E. W. Weisstein, Mar. 5, 2005) | proven prime by I. L. Canestro in 2004; search underway by E. W. Weisstein | |
Bernoulli number numerator | A092132 | 42 | 22 | E. W. Weisstein (Mar. 2004) | 44800 (E. W. Weisstein, Mar. 5, 2005) | probable prime; search underway by E. W. Weisstein |
Carol number | A091515 | 226749 | 136517 | S. Harvey (2005) | ||
Catalan-Mersenne number | 4 | 39 | Catalan (1876) | has no prime factor less than 1051 | Noll; private correspondence with C. K. Caldwell, Aug. 10, 2003 | |
central trinomial coefficient | 4 | 2 | J. Vos Post (Feb. 2005) | 83786 (E. W. Weisstein, Mar. 5, 2005) | search underway by E. W. Weisstein | |
central trinomial coefficient cousin | A104010 | 31877 | 11139 | E. W. Weisstein (Feb. 25, 2005) | 105 (E. W. Weisstein, Mar. 7, 2005) | |
consecutive number sequences consecutive cubes | - | - | 10200 (E. W. Weisstein, Mar. 5, 2005) | none known; search underway by E. W. Weisstein | ||
consecutive number sequences consecutive integers | - | - | 20856 (E. W. Weisstein, Mar. 5, 2005) | none known; search underway by E. W. Weisstein | ||
consecutive number sequences consecutive odd | A046036 | 2570 | 9725 | 14604 (E. W. Weisstein, Mar. 5, 2005) | probable prime; search underway by E. W. Weisstein | |
consecutive number sequences consecutive primes | A046035 | 1429 | 5719 | 12942 (E. W. Weisstein, Mar. 5, 2005) | probable prime; search underway by E. W. Weisstein | |
consecutive number sequences consecutive squares | 3 | 3 | 11516 (E. W. Weisstein, Mar. 5, 2005) | search underway by E. W. Weisstein | ||
consecutive number sequences reverse integers | 82 | 155 | 19413 (E. W. Weisstein, Mar. 5, 2005) | probable prime; no others known; search underway by E. W. Weisstein | ||
Cullen number | A005849 | 481899 | 145072 | |||
Delannoy number | 8 | 6 | E. W. Weisstein (Mar. 2004) | 3530200 (E. W. Weisstein, Mar. 26, 2004) | ||
double Mersenne number | 7 | 39 | 60 (G. Haworth 1983) | status of 61 is unknown, search being coordinated by T. Forbes | ||
Euler number | A103234 | 510 | 1062 | 12884 (E. W. Weisstein, Mar. 5, 2005) | proven prime; search underway by E. W. Weisstein | |
factorial prime | A002982 | 34790 | 142891 | 21480-34790 incompletely searched; search underway by E. W. Weisstein | ||
factorial prime | A002981 | 26951 | 107707 | search underway by E. W. Weisstein | ||
factorial sums | A100289 | 3175 | 19483 | T. D. Noe (Dec. 11, 2004) | 4000 (T. D. Noe) | probable prime; sequence must be finite |
Fermat prime | 4 | 5 | 32 | |||
Fibonacci prime | A001605 | 590041 | 123311 | H. Lifchitz (Jan. 2005) | probable prime | |
Harmonic number numerator | A056903 | 27754 | 12035 | E. W. Weisstein (Mar. 7, 2005) | 28004 (E. W. Weisstein, Mar. 7, 2005) | search underway by E. W. Weisstein |
irregular prime | A000928 | 5083 | M. Oakes (2003) | |||
Kynea number | A091513 | 110615 | 66597 | P. Minovic (Feb. 19, 2004) | 173000 (P. Minovic, C. Emmanuel) | |
left factorial | A100614 | 4769 | 15470 | T. D. Noe | ||
Lucas number | A001606 | 532277 | 111240 | R. Lifchitz (Mar. 2004) | probable prime | |
Mersenne prime | A000043 | 20996011 | 6320430 | J. Findley (Jun. 2004) | proven prime; 42nd Mersenne prime apparently found on Feb. 18, 2005 | |
Motzkin number | A092831 | 36 | 15 | E. W. Weisstein (Mar. 2004) | 204300 (E. W. Weisstein, Mar. 26, 2004) | |
palindromic prime | A002385 | 104281 | D. Heuer (2003) | |||
partition function P | A046063 | 127080 | 392 | E. W. Weisstein (Mar. 9, 2004) | ||
partition function Q | A035359 | 320397 | 625 | E. W. Weisstein | ||
Pell number | A096650 | 79043 | 30256 | T. D. Noe | 80000 (T. D. Noe) | probable prime |
Pell-Lucas number | A099088 | 90197 | 34525 | T. D. Noe | probable prime | |
primorial prime | A057704 | 1849 | 6845 | 9592 (Caldwell and Gallot 2002) | search underway by E. W. Weisstein | |
primorial prime | A014545 | 33237 | 169966 | 42507 (D. Heuer) | 9592-33237 incompletely searched?; search underway by E. W. Weisstein | |
repunit | A004023 | 86453 | 86453 | L. Baxter (Oct. 26, 2000) | ||
Sophie Germain prime | A005384 | 36523 | P. Minovic (2005) | |||
subfactorial | A100614 | 4769 | ||||
super Catalan number | A092839 | 216 | 161 | E. W. Weisstein (Mar. 2004) | 584400 (E. W. Weisstein, Mar. 16, 2004) | |
Thâbit ibn Kurrah number | A002235 | 164987 | 49667 | |||
tribonacci number | A092835 | 96878 | 25639 | K. Duszenko (Aug. 2003) | probable prime | |
Wilson prime | A007540 | 563 | 3 | (Crandall et al. 1997) | ||
Woodall number | A002234 | 151023 | 45468 |
Integer Sequence, Prime Number, Probable Prime
Caldwell, C. and Gallot, Y. "On the Primality of and
Forbes, T. "MM61: A Search for a Factor of
Harvey, S. http://www.geocities.com/harvey563/Carol_Kynea.txt.
Lifchitz, H. and Lifchitz, R. "PRP Top Records." http://www.primenumbers.net/prptop/prptop.php.
Sloane, N. J. A. Sequences A000043, A000928, A001605, A001606, A002234, A002235, A002981/M0908, A002982/M2321, A004023, A005849/M5401, A014545, A014547, A035359, A046036, A046063, A046284, A051130, A057704, A091513, A091515, A092132, A092825, A092831, A092835, A092839 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.