A Mersenne prime is a Mersenne number, i.e., a number of the form
that is prime. In order for to be prime, n must itself be prime. This is true since for composite n with factors r and s, n = rs. Therefore, can be written as
The first few Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... (Sloane's A000668) corresponding to indices n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... (Sloane's A000043).
Mersenne primes were first studied because of the remarkable properties that every Mersenne prime corresponds to exactly one perfect number. L. Welsh maintains an extensive bibliography and history of Mersenne numbers.
It has been conjectured that there exist an infinite number of Mersenne primes. Fitting a line to the asymptotic number of Mersenne primes with gives a best-fit line with
However, finding Mersenne primes is computationally very challenging. For example, the 1963 discovery that is prime was heralded by a special postal meter design, illustrated above, issued in Urbana, Illinois.
G. Woltman has organized a distributed search program via the Internet known as GIMPS (Great Internet Mersenne Prime Search) in which hundreds of volunteers use their personal computers to perform pieces of the search. On November 17, 2003, almost exactly two years after the previous find, a GIMPS volunteer reported discovery of the 40th Mersenne prime, a discovery that was subsequently confirmed. Almost exactly six months later, discovery of the 41st known Mersenne prime by a GIMPS volunteer was announced. Discovery of the 42nd known Mersenne prime was announced by Woltman on Feb. 18, 2005, but has yet to be confirmed. The efforts of GIMPS volunteers make this distributed computing project the discoverer of all seven of the largest known Mersenne primes. In fact, as of Feb. 2005, GIMPS participants have tested and double-checked all exponents below and tested all exponents below at least once (GIMPS).
The table below gives the index p of known Mersenne primes (Sloane's A000043)
# | p | digits | year | discoverer (reference) |
1 | 2 | 1 | antiquity | |
2 | 3 | 1 | antiquity | |
3 | 5 | 2 | antiquity | |
4 | 7 | 3 | antiquity | |
5 | 13 | 4 | 1461 | Reguis (1536), Cataldi (1603) |
6 | 17 | 6 | 1588 | Cataldi (1603) |
7 | 19 | 6 | 1588 | Cataldi (1603) |
8 | 31 | 10 | 1750 | Euler (1772) |
9 | 61 | 19 | 1883 | Pervouchine (1883), Seelhoff (1886) |
10 | 89 | 27 | 1911 | Powers (1911) |
11 | 107 | 33 | 1913 | Powers (1914) |
12 | 127 | 39 | 1876 | Lucas (1876) |
13 | 521 | 157 | Jan. 30, 1952 | Robinson |
14 | 607 | 183 | Jan. 30, 1952 | Robinson |
15 | 1279 | 386 | Jan. 30, 1952 | Robinson |
16 | 2203 | 664 | Jan. 30, 1952 | Robinson |
17 | 2281 | 687 | Jan. 30, 1952 | Robinson |
18 | 3217 | 969 | Sep. 8, 1957 | Riesel |
19 | 4253 | 1281 | Nov. 3, 1961 | Hurwitz |
20 | 4423 | 1332 | Nov. 3, 1961 | Hurwitz |
21 | 9689 | 2917 | May 11, 1963 | Gillies (1964) |
22 | 9941 | 2993 | May 16, 1963 | Gillies (1964) |
23 | 11213 | 3376 | Jun. 2, 1963 | Gillies (1964) |
24 | 19937 | 6002 | Mar. 4, 1971 | Tuckerman (1971) |
25 | 21701 | 6533 | Oct. 30, 1978 | Noll and Nickel (1980) |
26 | 23209 | 6987 | Feb. 9, 1979 | Noll (Noll and Nickel 1980) |
27 | 44497 | 13395 | Apr. 8, 1979 | Nelson and Slowinski (Slowinski 1978-79) |
28 | 86243 | 25962 | Sep. 25, 1982 | Slowinski |
29 | 110503 | 33265 | Jan. 28, 1988 | Colquitt and Welsh (1991) |
30 | 132049 | 39751 | Sep. 20, 1983 | Slowinski |
31 | 216091 | 65050 | Sep. 6, 1985 | Slowinski |
32 | 756839 | 227832 | Feb. 19, 1992 | Slowinski and Gage |
33 | 859433 | 258716 | Jan. 10, 1994 | Slowinski and Gage |
34 | 1257787 | 378632 | Sep. 3, 1996 | Slowinski and Gage |
35 | 1398269 | 420921 | Nov. 12, 1996 | Joel Armengaud/GIMPS |
36 | 2976221 | 895832 | Aug. 24, 1997 | Gordon Spence/GIMPS (Devlin 1997) |
37 | 3021377 | 909526 | Jan. 27, 1998 | Roland Clarkson/GIMPS |
38 | 6972593 | 2098960 | Jun. 1, 1999 | Nayan Hajratwala/GIMPS |
39 | 13466917 | 4053946 | Nov. 14, 2001 | Michael Cameron/GIMPS (Whitehouse 2001, Weisstein 2001ab) |
40? | 20996011 | 6320430 | Nov. 17, 2003 | Michael Shafer/GIMPS (Weisstein 2003ab) |
41? | 24036583 | 7235733 | May 15, 2004 | Josh Findley/GIMPS (Weisstein 2004) |
42? | - | - | Feb. 18, 2005 | GIMPS (Weisstein 2005) |
Trial division is often used to establish the compositeness of a potential Mersenne prime. This test immediately shows to be composite for p = 11, 23, 83, 131, 179, 191, 239, and 251 (with small factors 23, 47, 167, 263, 359, 383, 479, and 503, respectively). A much more powerful primality test for is the Lucas-Lehmer test.
If is a prime, then divides iff is prime. It is also true that prime divisors of must have the form where k is a positive integer and simultaneously of either the form or (Uspensky and Heaslet 1939).
A prime factor p of a Mersenne number is a Wieferich prime iff
Catalan-Mersenne Number, Cunningham Number, Double Mersenne Number, Fermat-Lucas Number, Fermat Number, Fermat Polynomial, Integer Sequence Primes, Lucas-Lehmer Test, Mersenne Number, Perfect Number, Repunit, Superperfect Number, Titanic Prime
Bateman, P. T.; Selfridge, J. L.; and Wagstaff, S. S. "The New Mersenne Conjecture." Amer. Math. Monthly 96, 125-128, 1989.
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 66, 1987.
Beiler, A. H. Ch. 3 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.
Bell, E. T. Mathematics: Queen and Servant of Science. Washington, DC: Math. Assoc. Amer., 1987.
Caldwell, C. "Mersenne Primes: History, Theorems and Lists." http://www.utm.edu/research/primes/mersenne/.
Caldwell, C. K. "The Top Twenty: Mersenne Primes." http://www.utm.edu/research/primes/lists/top20/Mersenne.html.
Caldwell, C. "GIMPS Finds a Prime! Is Prime." http://www.utm.edu/research/primes/notes/1398269/.
Caldwell, C. "GIMPS Finds a Multi-Million Digit Prime!." http://www.utm.edu/research/primes/notes/6972593/.
Colquitt, W. N. and Welsh, L. Jr. "A New Mersenne Prime." Math. Comput. 56, 867-870, 1991.
Conway, J. H. and Guy, R. K. "Mersenne's Numbers." In The Book of Numbers. New York: Springer-Verlag, pp. 135-137, 1996.
Devlin, K. "World's Largest Prime." FOCUS: Newsletter Math. Assoc. Amer. 17, 1, Dec. 1997.
Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 13, 1952.
Flannery, S. and Flannery, D. In Code: A Mathematical Journey. London: Profile Books, pp. 47-51, 2000.
Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, p. 85, 1984.
Gardner, M. "Patterns in Primes Are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243, 18-28, Dec. 1980.
Gillies, D. B. "Three New Mersenne Primes and a Statistical Theory." Math Comput. 18, 93-97, 1964.
GIMPS. "GIMPS Status." http://www.mersenne.org/status.htm.
Guy, R. K. "Mersenne Primes. Repunits. Fermat Numbers. Primes of Shape [sic]." §A3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 8-13, 1994.
Haghighi, M. "Computation of Mersenne Primes Using a Cray X-MP." Intl. J. Comput. Math. 41, 251-259, 1992.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 14-16, 1979.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Kraitchik, M. "Mersenne Numbers and Perfect Numbers." §3.5 in Mathematical Recreations. New York: W. W. Norton, pp. 70-73, 1942.
Kravitz, S. and Berg, M. "Lucas' Test for Mersenne Numbers
Lehmer, D. H. "On Lucas's Test for the Primality of Mersenne's Numbers." J. London Math. Soc. 10, 162-165, 1935.
Leyland, P. http://research.microsoft.com/~pleyland/factorization/factors/mersenne.txt.
Mersenne, M. Cogitata Physico-Mathematica. 1644.
Mersenne Organization. "GIMPS Discovers 36th Known Mersenne Prime, Is Now the Largest Known Prime." http://www.mersenne.org/2976221.htm.
Mersenne Organization. "GIMPS Discovers 37th Known Mersenne Prime, Is Now the Largest Known Prime." http://www.mersenne.org/3021377.htm.
Mersenne Organization. "GIMPS Finds First Million-Digit Prime, Stakes Claim to EFF Award. Is Now the Largest Known Prime." http://www.mersenne.org/6972593.htm.
Noll, C. and Nickel, L. "The 25th and 26th Mersenne Primes." Math. Comput. 35, 1387-1390, 1980.
Powers, R. E. "The Tenth Perfect Number." Amer. Math. Monthly 18, 195-196, 1911.
Powers, R. E. "Note on a Mersenne Number." Bull. Amer. Math. Soc. 40, 883, 1934.
Shankland, S. "Cooperative Computing Finds Top Prime Number." ZDNet News: Hardware. Dec. 2, 2003. http://zdnet.com.com/2100-1103_2-5112827.html?tag=zdfd.newsfeed.
Sloane, N. J. A. Sequences A000043/M0672 and A000668/M2696 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.
Slowinski, D. "Searching for the 27th Mersenne Prime." J. Recreat. Math. 11, 258-261, 1978-1979.
Slowinski, D. Sci. News 139, 191, 9/16/1989.
Spiegel Online: Wissenschaft. "Student entdeckt bisher größte Primzahl." Dec. 3, 2003. http://www.spiegel.de/wissenschaft/mensch/0,1518,276682,00.html.
Tuckerman, B. "The 24th Mersenne Prime." Proc. Nat. Acad. Sci. USA 68, 2319-2320, 1971.
Uhler, H. S. "A Brief History of the Investigations on Mersenne Numbers and the Latest Immense Primes." Scripta Math. 18, 122-131, 1952.
Uspensky, J. V. and Heaslet, M. A. Elementary Number Theory. New York: McGraw-Hill, 1939.
Weisstein, E. W. "New Mersenne Prime (Probably) Discovered." MathWorld Headline News, Nov. 19, 2001a. ../topics/news/2003-11-19/mersenne/.
Weisstein, E. W. "New Mersenne Prime Announced." MathWorld Headline News, Dec. 5, 2001b. ../topics/news/2001-12-05/mersenne/.
Weisstein, E. W. "40th Mersenne Prime (Probably) Discovered." MathWorld Headline News, Nov. 19, 2003a. ../topics/news/2003-11-19/mersenne/.
Weisstein, E. W. "40th Mersenne Announced." MathWorld Headline News, Dec. 2, 2003b. ../topics/news/2003-12-02/mersenne/.
Weisstein, E. W. "41st Mersenne Announced." MathWorld Headline News, Jun. 1, 2004. ../topics/news/2004-06-01/mersenne/.
Weisstein, E. W. "42nd Mersenne Prime (Probably) Discovered." MathWorld Headline News, Feb. 18, 2005. ../topics/news/2005-02-18/mersenne/.
Welsh, L. "Marin Mersenne." http://www.utm.edu/research/primes/mersenne/LukeMirror/mersenne.htm.
Welsh, L. "Mersenne Numbers & Mersenne Primes Bibliography." http://www.utm.edu/research/primes/mersenne/LukeMirror/biblio.htm.
Whitehouse, D. "Number Takes Prime Position." December 5, 2001. BBC News online. http:// http://news.bbc.co.uk/hi/english/sci/tech/newsid_1693000/1693364.stm.
Woltman, G. "The GREAT Internet Mersenne Prime Search." http://www.mersenne.org/prime.htm.