A Wilson prime is a prime satisfying

where W(p) is the Wilson quotient, or equivalently,

The first few Wilson primes are 5, 13, and 563 (Sloane's A007540), with no others less than (Crandall et al. 1997).
Brown Numbers, Wilson Quotient, Wilson's Theorem
Crandall, R.; Dilcher, K; and Pomerance, C. "A search for Wieferich and Wilson Primes." Math. Comput. 66, 433-449, 1997.
Gonter, R. H. and Kundert, E. G. "All Numbers Up to Have Been Tested without Finding a New Wilson Prime." Preprint, 1994.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 167, 2003.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 56, 1983.
Ribenboim, P. "Wilson Primes." §5.4 in The New Book of Prime Number Records. New York: Springer-Verlag, pp. 346-350, 1996.
Sloane, N. J. A. Sequences A007540/M3838 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 73, 1991.