A Pisot number is a positive algebraic integer greater than 1 all of whose conjugate elements have absolute value less than 1. A real quadratic algebraic integer greater than 1 and of degree 2 or 3 is a Pisot number if its norm is equal to ± 1. The golden ratio (denoted when considered as a Pisot number) is an example of a Pisot number since it has degree two and norm -1.
The smallest Pisot number is given by the positive root (Sloane's A060006) of
(1) |
This number was identified as the smallest known by Salem (1944), and proved to be the smallest possible by Siegel (1944).
Pisot-Vijayaraghavan constants give rise to almost integers. For example, the larger the power to which is taken, the closer
Siegel also identified the second smallest Pisot numbers as the positive root (Sloane's A086106) of
(2) |
showed that and are isolated, and showed that the positive roots of each polynomial
(3) |
for n = 1, 2, 3, ...,
(4) |
for n = 3, 5, 7, ..., and
(5) |
for n = 3, 5, 7, ....
A more spectacular example is
(6) |
which is within of an integer (Trott 2004, pp. 8-9).
All the Pisot numbers less than are known (Dufresnoy and Pisot 1955). Some small Pisot numbers and their polynomials are given in the following table. The latter two entries are from Boyd (1977).
number | Sloane | order | polynomial coefficients |
1.3247179572 | A060006 | 3 | 1 0 -1 -1 |
1.3802775691 | A086106 | 4 | 1 -1 0 0 -1 |
1.6216584885 | 16 | 1 -2 2 -3 2 -2 1 0 0 1 -1 2 -2 2 -2 1 -1 | |
1.8374664495 | 20 | 1 -2 0 1 -1 0 1 -1 0 1 0 -1 0 1 -1 0 1 -1 0 1 -1 |
Pisot numbers originally arose in the consideration of
(7) |
where denotes the fractional part of x and is the floor function. Letting be a number greater than 1 and a positive number, for a given
Pisot (1938) subsequently proved the fact that if is chosen such that there exists a for which the series
(8) |
converges, then is an algebraic integer whose conjugates all (except for itself) have modulus
(9) |
Almost Integer, Equidistributed Sequence, Salem Constants, Weyl's Criterion
Bell, J. P. and Hare, K. G. "Properties of for q a Pisot number." http://www.math.uwaterloo.ca/~kghare/Preprints/PDF/P17_Zq.pdf.
Bertin, M. J. and Pathiaux-Delefosse, A. Conjecture de Lehmer et petits nombres de Salem. Kingston: Queen's Papers in Pure and Applied Mathematics, 1989.
Bertin, M. J.; Decomps-Guilloux, A.; Grandet-Hugot, M.; Pathiaux-Delefosse, M.; and Schreiber, J. P. Pisot and Salem Numbers. Basel: Birkhäuser, 1992.
Borwein, P. and Hare, K. G. "Some Computations on Pisot and Salem Numbers." CECM-00:148, 18 May. http://www.cecm.sfu.ca/preprints/2000pp.html#00:148.
Boyd, D. W. "Small Salem Numbers." Duke Math. J. 44, 315-328, 1977.
Boyd, D. W. "Pisot and Salem Numbers in Intervals of the Real Line." Math. Comput. 32, 1244-1260, 1978.
Boyd, D. W. "Pisot Numbers in the Neighbourhood of a Limit Point. II." Math. Comput. 43, 593-602, 1984.
Boyd, D. W. "Pisot Numbers in the Neighbourhood of a Limit Point. I." J. Number Theory 21, 17-43, 1985.
Dubickas, A. "A Note on Powers of Pisot Numbers." Publ. Math. Debrecen 56, 141-144, 2000.
Dufresnoy, J. and Pisot, C. "Étude de certaines fonctions méromorphes bornées sur le cercle unité, application à un ensemble fermé d'entiers algébriques." Ann. Sci. École Norm. Sup. 72, 69-92, 1955.
Erdos, P.; Joó, M.; and Schnitzer, F. J. "On Pisot Numbers." Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 39, 95-99, 1997.
Katai, I. and Kovacs, B. "Multiplicative Functions with Nearly Integer Values." Acta Sci. Math. 48, 221-225, 1985.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 38 and 148, 1983.
Luca, F. "On a Question of G. Kuba." Arch. Math. (Basel) 74, 269-275, 2000.
Koksma, J. F. "Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins." Comp. Math. 2, 250-258, 1935.
Pisot, C. "La répartition modulo 1 et les nombres algébriques." Annali di Pisa 7, 205-248, 1938.
Salem, R. "Sets of Uniqueness and Sets of Multiplicity." Trans. Amer. Math. Soc. 54, 218-228, 1943.
Salem, R. "A Remarkable Class of Algebraic Numbers. Proof of a Conjecture of Vijayaraghavan." Duke Math. J. 11, 103-108, 1944.
Salem, R. "Power Series with Integral Coefficients." Duke Math. J. 12, 153-172, 1945.
Siegel, C. L. "Algebraic Numbers whose Conjugates Lie in the Unit Circle." Duke Math. J. 11, 597-602, 1944.
Sloane, N. J. A. Sequences A051016, A051017, A060006, and A086106 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.
Vijayaraghavan, T. "On the Fractional Parts of the Powers of a Number, II." Proc. Cambridge Phil. Soc. 37, 349-357, 1941.