


Let and
be periods of a doubly periodic function, with
the half-period ratio a number with
.
![]() |
(1) |
where and
are the invariants of the Weierstrass elliptic function with modular discriminant
![]() |
(2) |
(Klein 1877). If ,
![]() |
(3) |
is a function of the ratio only, as are
,
,
.
,
,
,
are analytic in H (Apostol 1997, p. 15).
Klein's absolute invariant is implemented in Mathematica as KleinInvariantJ[tau].
The function is the same as the j-function, modulo a constant multiplicative factor.
Every rational function of J is a modular function, and every modular function can be expressed as a rational function of J (Apostol 1997, p. 40).
Klein's invariant can be given explicitly by
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
(5) |
(Klein 1878/79, Cohn 1994), where

![]() |
(6) |
is a Jacobi theta function, the
are Ramanujan-Eisenstein series, and q is the nome. Klein's invariant can also be simply expressed in terms of the five Weber functions
,
,
,
,
.
is invariant under a unimodular transformation, so
![]() |
(7) |
and is a modular function.
takes on the special values
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
satisfies the functional equations
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
It satisfies a number of beautiful multiple-argument identities, including the duplication formula
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
with
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
and

![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
with
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
and the quintuplication formula
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
with
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |

Plotting the real or imaginary part of in the complex plane produces a beautiful fractal-like structure illustrated above.
Elliptic Lambda Function, j-Function, Jacobi Theta Functions, Pi, Ramanujan-Eisenstein Series, Weber Functions
Apostol, T. M. "Klein's Modular Function ,
and
,
Brezhnev, Y. V. "Uniformisation: On the Burnside Curve .
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 115 and 179, 1987.
Cohn, H. Introduction to the Construction of Class Fields. New York: Dover, p. 73, 1994.
Klein, F. "Sull' equazioni dell' Icosaedro nella risoluzione delle equazioni del quinto grado [per funzioni ellittiche]." Reale Istituto Lombardo, Rendiconto, Ser. 2 10, 1877.
Klein, F. "Über die Transformation der elliptischen Funktionen und die Auflösung der Gleichungen fünften Grades." Math. Ann. 14, 1878/79.
Nesterenko, Yu. V. A Course on Algebraic Independence: Lectures at IHP 1999. http://www.math.jussieu.fr/~nesteren/.