An integer d is a fundamental discriminant if it is not equal to 1, not divisible by any square of any odd prime, and satisfies or
The first few positive fundamental discriminants are 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, ... (Sloane's A003658). Similarly, the first few negative fundamental discriminants are -3, -4, -7, -8, -11, -15, -19, -20, -23, -24, -31, ... (Sloane's A003657).
Class Number, Dirichlet L-Series, Discriminant
Atkin, A. O. L. and Morain, F. "Elliptic Curves and Primality Proving." Math. Comput. 61, 29-68, 1993.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, p. 294, 1987.
Cohn, H. Advanced Number Theory. New York: Dover, 1980.
Dickson, L. E. History of the Theory of Numbers, Vols. 1-3. New York: Chelsea, 1952.
Sloane, N. J. A. Sequences A003657/M2332 and A003658/M3776 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.