Fundamental Discriminant


An integer d is a fundamental discriminant if it is not equal to 1, not divisible by any square of any odd prime, and satisfies or . FundamentalDiscriminant[d] in the Mathematica package NumberTheory`NumberTheoryFunctions` (available starting with Version 5.0 and which can be loaded using the command <<NumberTheory`) will test if an integer d is a fundamental discriminant.

The first few positive fundamental discriminants are 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, ... (Sloane's A003658). Similarly, the first few negative fundamental discriminants are -3, -4, -7, -8, -11, -15, -19, -20, -23, -24, -31, ... (Sloane's A003657).

 

Class Number, Dirichlet L-Series, Discriminant




References

Atkin, A. O. L. and Morain, F. "Elliptic Curves and Primality Proving." Math. Comput. 61, 29-68, 1993.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, p. 294, 1987.

Cohn, H. Advanced Number Theory. New York: Dover, 1980.

Dickson, L. E. History of the Theory of Numbers, Vols. 1-3. New York: Chelsea, 1952.

Sloane, N. J. A. Sequences A003657/M2332 and A003658/M3776 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.