As a consequence of Matiyasevich's refutation of Hilbert's 10th problem, it can be proved that there does not exists a general algorithm for solving a general quartic Diophantine equation. However, the algorithm for constructing such an unsolvable quartic Diophantine equation can require arbitrarily many variables (Matiyasevich 1993).
As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 19 positive biquadrates (), that every "sufficiently large" integer is a sum of no more than 16 positive biquadrates (), and that every integer is a sum of at most 10 signed biquadrates (
The 4.1.2 equation
(1) |
is a case of Fermat's last theorem with n = 4 and therefore has no solutions. In fact, the equations
(2) |
also have no solutions in integers (Nagell 1951, pp. 227 and 229). The equation
(3) |
has no solutions in integers (Nagell 1951, p. 230). The only number of the form
(4) |
which is prime is 5 (Baudran 1885, Le Lionnais 1983).
Let the notation stand for the equation consisting of a sum of m pth powers being equal to a sum of n pth powers. In 1772, Euler proposed that the 4.1.3 equation
(5) |
had no solutions in integers (Lander et al. 1967). This assertion is known as the Euler quartic conjecture. Ward (1948) showed there were no solutions for
(6) |
and showed that infinitely many solutions existed (Guy 1994, p. 140). In 1988, Roger Frye found
(7) |
and proved that there are no solutions in smaller integers (Guy 1994, p. 140). Another solution was found by Allan MacLeod in 1997,
(8) |
(Ekl 1998). It is not known if there is a parametric solution. In contrast, there are many solutions to the equation
(9) |
(see below).
The 4.1.4 equation
(10) |
has solutions
(11) | |||
(12) | |||
(13) | |||
(14) | |||
(15) | |||
(16) | |||
(17) | |||
(18) | |||
(19) | |||
(20) | |||
(21) | |||
(22) | |||
(23) | |||
(24) | |||
(25) | |||
(26) | |||
(27) | |||
(28) | |||
(29) | |||
(30) | |||
(31) | |||
(32) | |||
(33) | |||
(34) | |||
(35) | |||
(36) | |||
(37) | |||
(38) | |||
(39) | |||
(40) | |||
(41) | |||
(42) | |||
(43) | |||
(44) | |||
(45) | |||
(46) | |||
(47) | |||
(48) | |||
(49) | |||
(50) | |||
(51) | |||
(52) | |||
(53) | |||
(54) | |||
(55) | |||
(56) | |||
(57) | |||
(58) | |||
(59) | |||
(60) | |||
(61) | |||
(62) | |||
(63) | |||
(64) | |||
(65) | |||
(66) | |||
(67) | |||
(68) | |||
(69) | |||
(70) | |||
(71) | |||
(72) | |||
(73) | |||
(74) | |||
(75) | |||
(76) | |||
(77) | |||
(78) | |||
(79) | |||
(80) | |||
(81) | |||
(82) | |||
(83) | |||
(84) | |||
(85) | |||
(86) | |||
(87) | |||
(88) | |||
(89) | |||
(90) | |||
(91) | |||
(92) | |||
(93) | |||
(94) | |||
(95) | |||
(96) | |||
(97) | |||
(98) |
(Norrie 1911, Patterson 1942, Leech 1958, Brudno 1964, Lander et al. 1967, Rose and Brudno 1973; A. Stinchcombe, pers. comm., Oct. 25, 2004), but it is not known if there is a parametric solution (Guy 1994, p. 139).
There are an infinite number of solutions to the 4.1.5 equation
(99) |
Some of the smallest are
(100) | |||
(101) | |||
(102) | |||
(103) | |||
(104) | |||
(105) | |||
(106) | |||
(107) |
(Berndt 1994). Berndt and Bhargava (1993) and Berndt (1994, pp. 94-96) give Ramanujan's solutions for arbitrary s, t, m, and n,
(108) |
(109) |
Parametric solutions to the 4.2.2 equation
(110) |
are known (Euler 1802; Gérardin 1917; Guy 1994, pp. 140-141), but no "general" solution is known (Hardy 1999, p. 21). A few specific solutions are
(111) | |||
(112) | |||
(113) | |||
(114) | |||
(115) | |||
(116) | |||
(117) | |||
(118) | |||
(119) |
(Sloane's A003824 and A018786; Richmond 1920; Dickson, pp. 60-62; Dickson 1966, pp. 644-647; Leech 1957; Berndt 1994, p. 107; Ekl 1998 [with typo]), the smallest of which is due to Euler (Hardy 1999, p. 21). Lander et al. (1967) give a list of 25 primitive 4.2.2 solutions. General (but incomplete) solutions are given by
(120) | |||
(121) | |||
(122) | |||
(123) |
where
(124) | |||
(125) | |||
(126) | |||
(127) |
(Hardy and Wright 1979).
Parametric solutions to the 4.2.3 equation
(128) |
are known (Gérardin 1910, Ferrari 1913). The smallest solution is
(129) |
(Lander et al. 1967).
Ramanujan gave the 4.2.4 equation
(130) |
Ramanujan gave the 4.3.3 equations
(131) | |||
(132) | |||
(133) |
(Berndt 1994, p. 101). Similar examples can be found in Martin (1896). Parametric solutions were given by Gérardin (1911).
Ramanujan also gave the general expression
(134) |
(Berndt 1994, p. 106). Dickson (1966, pp. 653-655) cites several formulas giving solutions to the 4.3.3 equation, and Haldeman (1904) gives a general formula.
Ramanujan gave the 4.3.4 identities
(135) | |||
(136) | |||
(137) |
(Berndt 1994, p. 101). Haldeman (1904) gives general formulas for 4-2 and 4-3 equations.
Ramanujan gave
(138) |
(139) |
(140) |
(141) |
(142) |
(Berndt 1994, pp. 96-97). Formula (139) is equivalent to Ferrari's identity
(143) |
Bhargava's theorem is a general identity which gives the above equations as a special case, and may have been the route by which Ramanujan proceeded. Another identity due to Ramanujan is
(144) |
V. Kyrtatas (pers. comm., June 19, 1997) noticed that satisfy
(145) |
and asked if there are any other distinct integer solutions. Additional solutions are and (E. Clark, pers. comm., Jan. 26, 2004) and
Bhargava's Theorem, Biquadratic Number, Ford's Theorem, Multigrade Equation, Waring's Problem
Barbette, E. Les sommes de p-iémes puissances distinctes égales à une p-iéme puissance. Doctoral Dissertation, Liege, Belgium. Paris: Gauthier-Villars, 1910.
Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.
Berndt, B. C. and Bhargava, S. "Ramanujan--For Lowbrows." Am. Math. Monthly 100, 645-656, 1993.
Bhargava, S. "On a Family of Ramanujan's Formulas for Sums of Fourth Powers." Ganita 43, 63-67, 1992.
Brudno, S. "A Further Example of
Chen, S. "Equal Sums of Like Powers: On the Integer Solution of the Diophantine System." http://www.nease.net/~chin/eslp/.
Dickson, L. E. Introduction to the Theory of Numbers. New York: Dover.
Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1966.
Dutch, S. "Power Page: Sums of Fourth Powers." http://www.uwgb.edu/dutchs/RECMATH/rmpowers.htm#4power.
Ekl, R. L. "New Results in Equal Sums of Like Powers." Math. Comput. 67, 1309-1315, 1998.
Euler, L. Nova Acta Acad. Petrop. as annos 1795-1796 13, 45, 1802.
Fauquembergue, E. L'intermédiaire des Math. 5, 33, 1898.
Ferrari, F. L'intermédiaire des Math. 20, 105-106, 1913.
Guy, R. K. "Sums of Like Powers. Euler's Conjecture" and "Some Quartic Equations." §D1 and D23 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144 and 192-193, 1994.
Haldeman, C. B. "On Biquadrate Numbers." Math. Mag. 2, 285-296, 1904.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Hardy, G. H. and Wright, E. M. §13.7 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Hirschhorn, M. D. "Two or Three Identities of Ramanujan." Amer. Math. Monthly 105, 52-55, 1998.
Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. "A Survey of Equal Sums of Like Powers." Math. Comput. 21, 446-459, 1967.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 56, 1983.
Leech, J. "Some Solutions of Diophantine Equations." Proc. Cambridge Phil. Soc. 53, 778-780, 1957.
Leech, J. "On
Martin, A. "About Biquadrate Numbers whose Sum is a Biquadrate." Math. Mag. 2, 173-184, 1896.
Martin, A. "About Biquadrate Numbers whose Sum is a Biquadrate--II." Math. Mag. 2, 325-352, 1904.
Meyrignac, J.-C. "Computing Minimal Equal Sums Of Like Powers." http://euler.free.fr.
Nagell, T. "Some Diophantine Equations of the Fourth Degree with Three Unknowns" and "The Diophantine Equation
Norrie, R. University of St. Andrews 500th Anniversary Memorial Volume. Edinburgh, Scotland: pp. 87-89, 1911.
Patterson, J. O. "A Note on the Diophantine Problem of Finding Four Biquadrates whose Sum is a Biquadrate." Bull. Amer. Math. Soc. 48, 736-737, 1942.
Ramanujan, S. Notebooks. New York: Springer-Verlag, pp. 385-386, 1987.
Richmond, H. W. "On Integers Which Satisfy the Equation
Rivera, C. "Problems & Puzzles: Puzzle 047-
Rose, K. and Brudno, S. "More About Four Biquadrates Equal One Biquadrate." Math. Comput. 27, 491-494, 1973.
Sloane, N. J. A. Sequences A003294/M5446, A003824, and A018786 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.
Ward, M. "Euler's Problem on Sums of Three Fourth Powers." Duke Math. J. 15, 827-837, 1948.