Rosser's Theorem


The prime number theorem shows that the nth prime number has the asymptotic value

(1)

as (Havil 2003, p. 182). Rosser's theorem makes this a rigorous lower bound by stating that

(2)

for n > 1 (Rosser 1938). This result was subsequently improved to

(3)

where (Rosser and Schoenfeld 1975). The constant c was subsequently reduced to (Robin 1983). Robin and Massias (1996) then showed that c = 1 was admissible for and . Finally, Dusart (1999) showed that c = 1 holds for all n > 1 (Havil 2003, p. 183). The plots above show (black), (blue), and (red).

The difference between and is plotted above. The slope of the difference taken out to is approximately .

Prime Formulas, Prime Number, Prime Number Theorem




References

Dusart, P. "The Prime is Greater than for ." Math. Comput. 68, 411-415, 1999.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Massias, J.-P. and Robin, G. "Bornes effectives pour certaines fonctions concernant les nombres premiers." J. Théor. Nombres Bordeaux 8, 215-242, 1996.

Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 56-57, 1994.

Robin, G. "Estimation de la fonction de Tschebychef sur le k-iéme nombre premier et grandes valeurs de la fonction , nombres de diviseurs premiers de n." Acta Arith. 42, 367-389, 1983.

Robin, G. "Permanence de relations de récurrence dans certains développements asymptotiques." Publ. Inst. Math., Nouv. Sér. 43, 17-25, 1988.

Rosser, J. B. "The nth Prime is Greater than ." Proc. London Math. Soc. 45, 21-44, 1938.

Rosser, J. B. and Schoenfeld, L. "Sharper Bounds for Chebyshev Functions and ." Math. Comput. 29, 243-269, 1975.

Salvy, B. "Fast Computation of Some Asymptotic Functional Inverses." J. Symb. Comput. 17, 227-236, 1994.