A fraction containing each of the digits 1 through 9 is called a pandigital fraction. The following table gives the number of pandigital fractions which represent simple unit fractions. The numbers of pandigital fractions for 1/1, 1/2, 1/3, ... are 0, 12, 2, 4, 12, 3, 7, 46, 3, ... (Sloane's A054383).
f | # | fractions |
![]() |
12 | ![]() |
![]() |
||
![]() |
2 | ![]() |
![]() |
4 | ![]() |
![]() |
12 | ![]() |
![]() |
||
![]() |
3 | ![]() |
![]() |
7 | ![]() |
![]() |
||
![]() |
46 | ![]() |
![]() |
||
![]() |
||
![]() |
||
![]() |
||
![]() |
||
![]() |
||
![]() |
||
![]() |
3 | ![]() |
![]() |
0 | |
![]() |
0 | |
![]() |
4 | ![]() |
Pandigital, Pandigital Number, Steffi Problem, Unit Fraction
Friedman, M. J. Scripta Math. 8.
Sloane, N. J. A. Sequences A054383 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 27-28, 1986.