For a given m, determine a complete list of fundamental binary quadratic form discriminants such that the class number is given by
.
having
where
is the binary quadratic form discriminant corresponding to an quadratic field
(n = -1, -2, -3, -7, -11, -19, -43, -67, and -163; Sloane's A003173) the Heegner numbers. The Heegner numbers have a number of fascinating properties.
Stark (1967) and Baker (1966) gave independent proofs of the fact that only nine such numbers exist; both proofs were accepted. Baker (1971) and Stark (1975) subsequently and independently solved the generalized class number problem completely for m = 2. Oesterlé (1985) solved the case m = 3, and Arno (1992) solved the case m = 4. Wagner (1996) solve the cases n = 5, 6, and 7. Arno et al. (1993) solved the problem for odd m satisfying .
.
Class Number, Gauss's Class Number Conjecture, Heegner Number
Arno, S. "The Imaginary Quadratic Fields of Class Number 4." Acta Arith. 40, 321-334, 1992.
Arno, S.; Robinson, M. L.; and Wheeler, F. S. "Imaginary Quadratic Fields with Small Odd Class Number." Dec. 1993. http://www.math.uiuc.edu/Algebraic-Number-Theory/0009/.
Baker, A. "Linear Forms in the Logarithms of Algebraic Numbers. I." Mathematika 13, 204-216, 1966.
Baker, A. "Imaginary Quadratic Fields with Class Number 2." Ann. Math. 94, 139-152, 1971.
Conway, J. H. and Guy, R. K. "The Nine Magic Discriminants." In The Book of Numbers. New York: Springer-Verlag, pp. 224-226, 1996.
Goldfeld, D. M. "Gauss' Class Number Problem for Imaginary Quadratic Fields." Bull. Amer. Math. Soc. 13, 23-37, 1985.
Heegner, K. "Diophantische Analysis und Modulfunktionen." Math. Z. 56, 227-253, 1952.
Heilbronn, H. A. and Linfoot, E. H. "On the Imaginary Quadratic Corpora of Class-Number One." Quart. J. Math. (Oxford) 5, 293-301, 1934.
Ireland, K. and Rosen, M. A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, p. 192, 1990.
Lehmer, D. H. "On Imaginary Quadratic Fields whose Class Number is Unity." Bull. Amer. Math. Soc. 39, 360, 1933.
Montgomery, H. and Weinberger, P. "Notes on Small Class Numbers." Acta. Arith. 24, 529-542, 1974.
Oesterlé, J. "Nombres de classes des corps quadratiques imaginaires." Astérique 121-122, 309-323, 1985.
Oesterlé, J. "Le problème de Gauss sur le nombre de classes." Enseign Math. 34, 43-67, 1988.
Serre, J.-P. .
Shanks, D. "On Gauss's Class Number Problems." Math. Comput. 23, 151-163, 1969.
Sloane, N. J. A. Sequences A003173/M0827 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.
Stark, H. M. "A Complete Determination of the Complex Quadratic Fields of Class Number One." Michigan Math. J. 14, 1-27, 1967.
Stark, H. M. "On Complex Quadratic Fields with Class Number Two." Math. Comput. 29, 289-302, 1975.
Wagner, C. "Class Number 5, 6, and 7." Math. Comput. 65, 785-800, 1996.