A set of numbers ,
,
(mod m) form a complete set of residues, also called a covering
system, if they satisfy

for i = 0, 1, ..., .
in
for i = 1, ...,
run through the values 1, 2, ...,
.
Congruence, Exact Covering System, Haupt-Exponent, Modulo Order, Reduced Residue System, Residue Class
Guy, R. K. "Covering Systems of Congruences." §F13 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 251-253, 1994.
Nagell, T. "Residue Classes and Residue Systems." §20 in Introduction to Number Theory. New York: Wiley, pp. 69-71, 1951.
Eric W. Weisstein. "Complete Residue System."
From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CompleteResidueSystem.html

![]() |
|||
![]() |
![]() |
© 1999 CRC Press LLC,
© 1999-2005 Wolfram Research, Inc.